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NATIONAL  ADVISORY  QOMMTTTEE'^OR  AERONAUTICS 

TECHNICAL-NOTE   NO.-969 

ON A  METHOD   Off   CONSTRUCTIN&-TWO-DIMENSIQNAL   SUBSONIC. 

COMPRESSIBLE   FLOWS   AROUND   CLOSED  PROFILES'. 

By  Lipinan  Bers   • 

••   SUMMARY •'••.-      -. ' ;  • 

It'is shown that under' certain^eoriditions.a two-dimen- 
sional • subsonic compresslble flow around an airfoil profile - 
can-"be derived from an incompressible flüv'aroünd another • ' 
profile.- The connection'between these two "conjugate flows"• 
is given "by a simple conformal'transformation of the respec- 
tive hodograph planes. . '  J':'' 

The transformation of a given Incompressible flow into •• 
a compressible' flow around a slightly ' dlst ort ed- prof ilevre- '.- 
duces to the integration of a linear'partial differential, 
equation in the physical plane of th'e incompressible flow." 
An approximate solution of'this "equation is indicated'.- Fur-' 
ther research is necessary in order to extend the' applica-. 
bility of the method and in order to reduce the computational 
work involved in the-rigorbus'solution to an acceptable min- 
imum. ' '  - • '       • ?   •    •-. ~ 

The transformation of an incompressible flow into a 
compressible one- can be carried -out completely • arid' in a' 
closed form under the assumption of the linearized pressure-' 
density- relation.  The final formulas' represent an extension 
of the result of- "Von Karman'and Tsien, • to"which' they reduce, 
in the special'case of a flow without' circulation. .It. is. -. • 
shown'that essentially all compressible flows can be obtained 
by this method. - , 

RESTRICTED 
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IffTHODUOTIOH'*..••: v ••: . 

The high level vhiqh has bee's, *ättallied by the theory of 
two-dimensional incompressible flows is due to the fact that 
this theory is based upon a highly developed mathematical 
theory, that o^ analytic functions of :a' complex variable. 
Svery analytic function yields a. possible flow pattern and 
vice versa. • Furthermore, the uso'.of 'transformations per- 
formed by means of analytic functions (conformal transforma- 
tions) permits the derivation of all- possible flews from a 
few simple standard forms.  It seems obvious that the theory 
of two-dimensional compressible flows (at least as far as 
subsonic flows are concerned) requires the development of a 
similar mathematical background. 

The theory of> signia-monogenic .functions (reference's 1 
and 2) is an, .attempt to study, a class, of. complex functions ' 
the role of which in gas dynamics is comparable to that of 
analytic functions in the theory of incompressible flp.ws.' 
Gelbart (reference 3) has outlined the application of. .this 
method to the study of compressible flows.. Further applica- 
tions depend upon the investigation of singularit- ies of 
sigua-mono^enio.functions.  (Such an investigation is being 
conducted,)  Heference also is made to a recent report by - 
Gafrick and Kaplan (referenced).  The investigation of 
transformations which for the case of compressible flows take 
theplace of conformal transformations is the main theoreti- 
cal aim of the present report,   •  . 

.'The following remarks may.indicate in which way such 
transformations enter into the study of compressible flows 
around airfoil profiles. 

The differential equations governing the steady two- 
dimensional potential flow of a -c-ompr.essi.ble fluid are non- 
linear and therefore difficult--to .;treat ,as far äS both the- 
oretical co.nsiderrati ons ,and nu.me-r.ical computations are con- 
cerned.  .-Molenbroek (reference -5) and Tchaplygin (reference 
6) have shown that, the e dilations become linear in the hodo- 
graph plane.  There exist various methods of obtaining solu- 
tions of these hodograph equations, in particular of obtain- 
ing solutions which in a certain sense correspond to given 
solutions of the Oauchy-Riemann equations - that is, to given 
incompressible flows.  Some of these methods are:  separation 
of variables (so successfully used by Tchaplygin in solving 
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jet problems), the method of Integral operators (Bergman, 
reference 7), the method of sigma-monogenic functions (Bers 
and Gelbart, reference l), and an approximate method of 
Temple and Yarwood, (reference 8).  furthermore, by modifying 
the preBsure« 
"be made to c< 
done "by Tchaplygiu ^ * OJ.ÖJ. 0iJ.w« u,, -«.D»««..*^ \^ «4. w* w^^0 ^ 
Demtchonko (reference 10), and, in a more rational way, _„ 
Von Karmän and Tsien (references '11 and: 12).  "•.";-••.••. 

Hovete'r , tha-'-real difficulty• lies hot' only• in obtaining 
a solution hut in obtaining the "right" solution - that is, 
one which leads to a flow of a desired type in the physical 
plane, for example, to a flow around a closed profile.  This 
difficulty is illustrated "by the fact that even for the case 
when the hodograph equations'are simply the" "Gauchy-feiemann 
equations, the computation of flows around closed profiles 
has until now "been carried out only for a special case (flows" 
without circulation). 

Therefore the study of the,-flow, in the hpd.ograph plajae 
must he supplemented "by the investigation of the mapping of 
the physical. plane into -the/, hodograph.plane 'and of- possible 
transformations of incompressible flows around closed pro- 
files into compressible, flow.e. of the same type. • The present • 
report is an attempt in this direction. 

.. The. meth0d,s -.outlined-.ih this, report are at present, re- 
stricted to flows which are everywhere subsonic. . 3?lows of 
mixed type (subsonic main flow with locally supersonic re- 
gions) are .of more interest from the theoretical as 'well as 
from the practical viewpoint.  It is thought, however, that 
the solution of the problem of entirely • sub sonic flows is a 
necessary prorequi site for ;a . successful -.theoretical .treatment 
of the much more difficult problem of mixed flows. 

This investigation, carried out at Brown University, 
was sponsored by and conducted with the. financial assistance 
of the national Advisory Committee for Aeronautics.  The 
author i s-.i-n-debt-e-d t:Q Mr • •.. :J-, vBr.- 'Diaz for • valuable assistance. 
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SYMBOLS 

a      speed of Bound 

ds '   line element in the z-plane;' line element of the 
profile  P 

dS     non~3Juclidean length of  ds 

da     line element in the  £~plane; line element of the 
profile "~i ' ' 

E(P)   domain exterior to the profile  P 

3 (l"l)   domain exterior to the profile '"' 

exp( ) exponential function of ( ) - o'' 

Or(i)        com-olex potential of an incompressible flow in the 
t-plane, normalized so that  G'f00) = 1 

H      hodograph of a'compressible flow in the z-plane 

H*     distorted hodograph of a compressible flow in the 
z-plane 

i imaginary unit';    subscript   referring  to   an   incompress- 
ible   flow 

Im(    )      imaginary part   of      (    ) 

K bound   for   the'ratio   of•maximal   speed   to   stream   speed 
in   tho   conjugate   incompressible   flow 

M Mach   number 

MQ, stream Mach number 

n modulus of the correspondence between two flows 

o subscript referring to the state of fluid at rest 

o(E)   a function  f  such that  )f/H|—>-S>0  as  ft—s*Rx,  Hj. 
being some specified limit 
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0(E)        a   function     f      such  that      [f/^i      remains   "bounded   as 
, E —> H.x ,      Rx     "being   some   specified   limit 

p pressure 

P profile   in  the   z~plane 

q, speed 

q* distorted speed 

q_j_ speed of an incompressible flow 

q,      speed of.a fictitious'compressible flow in the  t-plane 

E      positive constant 

Ep     radius of curvature of the profile  P 

E|-|    radius of curvature of the profile n 

Ee( ) real part of  ( ) 

T coefficient of the • eymmetrized hodograph equations 

u, v components of the velocity 

u*,v* components of the distorted velocity 

x, y Cartesian coordinates in the z-plane 

X, Y Cartesian coordinates in the Z-plane 

z = x + -iy  complex variable in the physical plane of the 
compr.e.ssible flow 

Z = X + iY  auxiliary complex variable 

•v      exponent in the polytropic relation 

£   = | + IT)  complex variable in the plane of the incompress- 
ible flow 

0      angle between the velocity vector of the compressible 
flow and the x-axis 
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8j_ angle   "between   the   velocity  vector   of   the   incompress- 
ible   flow  and   the     £-axis r 

X logarithm   of   the   distorted   speed 

y. value   of   the   distorted   speed   at   infinity   for     V   =   -1 

it T|        Cartesian   coordinates   in   the   £~plane 

1 ' profile   in  the   £-plane 

p density 

p      density of the fictitious compressible.flow in the 
£-plane 

cp velocity potential 

X angle between a line element  ds  and a streamline 

ty stream function 

ß complex potential of the conjugate incompressible flow 

&i complex potential of an incompressible flow around 
the circle  [ Z't = E . 

co      the point infinity; subscript referring to the state 
of the fluid at' infinity 

T 5"    complex conjugate of ( ) 

]( )|  absolute value of ( ) 

The unit s are chosen so that  jj0  (. stagnat i on density) 
and  a0  ( speed of sound at a. st agnat i on point) are both 
equal t o unity. ' 
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. *• r ..  .:... ANALYSIS 

I. 0BN3RAL OOUCEPTÖ 

fundamental Relations 

It will "be assumed' that in a compressible fluid the 
pressure  p  is a given increasing function of the density  p. 
The velocity of sound .a .is given- by 

dp 

If -the flow'is irr otational, it follows from.Bernoulli's 
equation 

= 0 
P 

Po 

2   J       P 

that the density is a given "fun-c't'i.oh of the speed  q.  Since 
the preceding equation can he written in the form 

q dq + a3 M = 0 
P 

the Mach number  M'= q/a is given by the relation 

•.'.';  "'  p dq- ' 

The units will be chosen, so that 

a0 '•= 1,  p0' •= 1 ' (l) 

(the' subscript ' o  referring to the state of the fluid at 
rest).  This is equivalent to the introduction of dimension- 
less variables  q/a0, pJ-Pty»      •.»••'"..-•   •' 
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The   pressure-density relation used in gas dynamics is 
of the form '• ' 

p = A + BpY (2) 

This relation includes the case of an isöthermal flow, where 

.  . Y = 1 (3) 

and that of an adiabatic flow .with 

1 < y < 1.66 (4) 

(The standard value of  Y  for air is 1.405.)  The value 
Y = 2 -corresponds to the analogy "between a two-dimensional 
gas flow and a flow of"water in an open channel; .(Cf., for 
instance, Von Karman, reference 12.)  In the foregoing•cases 

A = 0, , 3 = pc 

The differential equations of a potential gas flow are con- 
siderably simplified by introducing the lineari zed pre ssure- 
volume relat ion with 

and 

• Y .=  -1       , . '       (5) 

A   =   p      +   a3   p   ,B   =   -a3   p3 

•^t» 00  rco CO  r CO 

vhere the subscript  «  refers to the state of the fluid at 
infinity, and  a^,. p^, p^ .have "been determined according to 
the actual pressure-density relation (with A = 0, B = p0, 
Y > l).  Using this relation amounts to replacing the curve 
giving the actual preBsure-density relation in the (l/p, pi- 
plane by its tangent at the point (l/p^,, p^) .  The linearized 
pressure-density relation has been introduced by Von Karman 
and Tsien (references .11 and Iß) , (and formerly in a less gen- 
eral form byTchaplygin (reference 6), Demtchenko (reference 
10),.and Bueeman (reference 9). 

The' relations between  p, M, and'  q  .obtained from . 
(2) depend only upon  Y  (and not upon  A  and  B)-.  For  Y=l 
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. >                  -                                                           •   p ~:e-as/2 ... (6) 

M  =   CL (7) 

for     V  ja  1    ,-.. 

P - (i-I^i^y/CV-O (8) 

..-                         ••• V/-v .,;. -^•.,.,:• •',•-• (9) 

so   that   for     *Y  = -1 

..   _   j. .. . 

1   -   _   qj 

p ** • ;    1     _ do) 
*/  1   +   q/ 

and 

M3 = —al_ • (11) 

p3   =   1   -   Ms " (12) 

In   figure  1,      p.    is  plotte'd1 as1 •&• function   of     q_     (for 
V = ~i,  i,  1.405).    ••' • •  -'  '        ••.•:-•. 

lor  V = -1, the flow,is always subsonic.  Tor  V ^ 1, 
the flow is subsonic as' long- as 

ci < <LB - /      Z       •   ~-    ' (13) 
8 </ y + i 

It   will   he   convenient   to  use. the  di st ort ed   sioeed     cj.* 
(first   introduced  by  Busemann   (reference   9)) 

V-"exp  /V 1   -   M*   dq *     (14) r 
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q*   =   1      for     'H  =   1 

For      Y  =   1 

q*   = -/l~q3 

i +7i - a3 

for     Y >   1 

1   -7l   -  M3 

q*   = 
1   +A/1   -   M3 

and   for     Y  = -1 

i + ycv-w I)/(Y• + i)Vi ~ M- 

i - y(r- I.)/(Y + DVI - M« 

i + J7 +   q" 

(15) 

(16) 

(17) 

(18) 

(In fig. 2,  q  and  q*  are plotted as functions of  M  for 
Y = 1.405.5 

For an incompressible fl"bw  p  is constant,  M = 0, 
and  q* = q. 

Equations of' Motion 

The      3c     and     y     components   of   the   dimensionless   velocity 
of   a   two-dimensi-onai   potential   Steady gas   flow,      u     and     v, . 
satisfy   the   condition   of   irrotationality     • ~ • '    •       •   " 

3u 
9y 3x 

=   0 

and the continuity equation . 

d(pu-) + .d(pv) _: Q 
<5 x    3 y 

These   equations   imply   the   existence   of  a  velocity  potential 
qp(x,y)      and   of  a   stream   function     \J/(>:,y)      so   that 



NAQA Iff. ffo. 969 11 

and 

It follows that 

u 
-&' 

V    = Bcp. 
By 

•v 
B\j/ 

.. Ptt 

By 
. » • 

'ax p By 

^ 

sy 
1 BJi 
p B:c -* 

(19) 

(20) 

(SI) 

The elimination of either \j/  or ' cp  lead's^-to ' the second- 
order equations '••*.'.' •'••'•'•' 

3_ 
Bx 0>1S*£(» If)-0 (22) 

3x   \p  Bx/ •, 
±.(!$£) = o 

••By  \p By/ 
(23) 

She fundamental equations (2l) to (-23) are-of a purely kine- 
matic nature and hold independently of the.. equation of state. 
If the density  p  is considered as a given function of 
space  (p = p(x,y)), the equations (22) are linear.and always 
of the elli-ptic type, no matter whether the flow is subsonic 
or supersonic. •:'•••'•'' 

However, the important case is that in which the density 
is a given function of pr e ssure and therefore also a given 

of the magnitude of the (dimensionl.e s.s); velocity' 

.(Of. preceding sec.)  In this--case equations 
are non-linear (more precisely:  quasi-linear). 

function 

q = /^~ 
(21) to 

+ v3' 
(23) 

The velocity distribution; in a given flow is uniquely 
determined "by the "boundary conditions and by the functional 
relation 
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p = f(q) (%r 
This remark justifies the use of the relation  Y = -1  for 
subsonic flows of not too high Mach number.  For, replacing 
the actual value of  Y  "by «1 changes the function  p = f(q) 
(and the differential equation for y),      q < 1,  only 
slightly.  (Of. fig. 1.)  Prom the equations given in the 
preceding section, it follows that the change of  p  is of 
the order of magnitude 

8 

Molenbroek (reference 5) and T&haplygin (reference 6) 
showed that linear equations can be obtained by considering 
cp  and  \|/  as functions of  q  and  6,  where  0  is the 
angle between the velocity vector and the x-axiß! 

6 = (tan"1) Z 
u 

(24) 

The equations take the form 

3cp _   q 3\|/ 
99        p 9q 

?SEL =   ~ A- (1   ~   Ms)  !ÜL 
5q              pq 36 

> (25) 

These equations can be brought to a symmetric form by replac- 
ing the independent variable  q  by 

X   = log q* 

q* being the distorted speed.  By virtu« of (14), (25) can be 
written in the form 

§2. _ m   $± 
as        ax 

äse. _ „T ajt 
BX ae 

•\ 

> (26) 
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with 

I. = Vl   ~   Ms 
(27) 

For   the   isothermal   case   (7  =   l) 

T = -/l  -   a3   e2 (28) 

For the polytropic case ("Y >'l) 

T   = 
i^y_±_i-^ V 

0-W*')! i   CY+1)/(V-1) 
(29) 

lor the case of the linearized equation of state ("V = -l) 

T_s i (30) 

and equations (26) are Cauchy-Riemann equations,*  In figure 2, 
5?  is plotted-.as a function of the local Mach number  M  (for 
V = 1.405).  It' should "be-noted" that- T  is a known function 
of and therefore also of 

The main advantage of the symmetric form (26) consists 
in the fact that the symmetric equations are invariant under 
conformal transformation of- the    6, Jwplane:  If new inde- 
pendent variables  |  and T\     are introduced "by setting 

| + iT) = Ke + IX) 

JP  being an analytic function, then 

5cp 

at 

Bcp 
3*1 

=   T 
a-n 

rp    3\j/. 

(31) 



14 KAOA TH No. 969 

with 

T   = TJq d* (£,T1) } 
In fact, (26) can "be written in the for m 

la ii ^ la sn _ « /ii Ü x ^fe ^l" -G 8|  36       a-n 96 \a|  3A      Br) 3Ä 

Isg. ii + lie §11 =   T f$± <L£. + M ajfl 
aj ax     a-n ax        . \a£ ae - an aej 

Eliminating the derivatives- of 
Cauchy-Riemann equations 

| -and  T)  by means of the 

ae "" ax*    ax "     ae 

yields-(3-1) .- 

In particular, the distorted velocity may. he defined as 
follows: .-.•••' 

u*.~ i'v* = eA~iö = q*e*"i6, (3 3) 

Then 

aco••_ wj ' d\l/- 
3u*     3v* 

Scp _ rp 3y 

3v*'    9u* 

(33) 

Since  3?  is a given function of  u*s + v*a = q*3,  the sec- 
ond-order equations obtained from (33) are 
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Acp - 2 1L  fu* -§£_ + Y*-*SJ)  = 0 

W  +2 '*L fu* *L 
•      TV   du* 

+ T* -^ = o 
Bv*J 

where 

A = 03/du*3) + (ö3/8v*3). and' I « * dT/dq.*3 

Distorted Hodograph of a Flow around a Profile 

Only the following types of flow will be considered in 
this paper.  The flow covers the domain exterior to a pro- 
file  P  (domain  l(P))'l  At infinity the flow approaches a 
uniform flow in the positive ^-direction, so that 

lim   • u = a^ •>  0,    lim    v = 0 (34) 
x3+y3—ä» oo x3+y3- 00 

The flow is everywhere subsonic (H < l).  The profile  P  is 
a streamline of the flow;  P  is a piecewise analytic curve 
possessing at most two' sharp edges.  If there are sharp edges, 
the Kutta—Joukowski condition is satisfied.  There are exactly 
two stagnation points, both situated on  P.  A uniform flow 
u = constant,  v = 0  is excluded.  (for' the sake of mathemat- 
ical discussion it is convenient to admit as "profiles"  P 
curves which intersect themselves'in a finite number of 
points.  The exterior  S(P)  is then a partly multiply cov- 
ered Riemann surface.) 

Incompressible flows considered will be subject to the 
same restrictions, except that the edges need not be sharp. 

The transformation 

u = u(x,y),   v = v(x,y) (35) 

takes  B(P)  into a domain  E  of the  (u,-v)~plane ;  H  (the 
hodograph of the flow) is,in general,multiply covered.  The 
t r an s f o r mat ion 
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u' = JL_ u = q* . c o s 0 ,   v* v. = S_L = ..cL* sin (36) 

takes  B(P)  into a domain  H*  of the (u*,-v*)-plane.  This 
domain will be denote-d "as tire di st orted Kod-ogra-ph of the flow 
(q*  and  -9  are the -polar coordinates in the (u*,-v*)-plane) 
(Of. fig. 3, (a), (13), (c).) 

It is known that in the case of art incompressible fluid 
the mapping o-f tiaa' flow' into It's hodograph is conformal.  It 
will be shown that the mapping of  E(p)  into  H*  can be con- 
sidered as conformal if angles and distances in  E(P)  are 
measured by., means of a oertäin fiiemanniaa metric generated by 
the flovr. 

Transformations Conformal with P.eBpect to ä Given Flow 

fl-iven a subsonic compressible flow covering a domain  D 
of the (x,y)-plane.  Let  ds = (dx, dy)  be an infinitesimal 
l'ine element situated at a point,  x, y  of  D,  M  the value 
of the Mach number at this point, and \     the angle between 
ds  and the streamline passing through  x,y.  The non- 
Euclidean length of the line element  ds  shall be defined as 

dS .= &SJ'l   -   Ma sin3 X (37) 

Let  ct  be the angle between the 'line element  ds  and 
the x-^axig-, . Since. X' == ±(9 - co) and  dx1 = "ds cos a, 
&y  =   ds' sin a,      it is easirly seen that (-37) can be written 
in the .form ••                  ' 

dSs = e dx3 + 2f dx dy +• g &ys (33) 

wher.e 

o = 1 M3 sin3 9 ' 

f ' = M >• sin,6 ccs "G ) 

g = 1 - - M 'cos' 6' 

(39) 

ThuB (37) is a Hiemann metric. 
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The   non-Euclidean' angle   -A     "between  two   line   elements 
de   =   (dx,   dy),      &s   =   (Sx,   Sy)••eituated  at   the   same  point 
x,y     is   defined "by ;      . 

. e   dx  8x  +   f (dx   6y   +  dy   6x)   +   g  dy  8y 
COS   A   =    . ••  

dS   SS 

6S     "being  the   non-Euclidean  length   of     8s. 

A   transformation 

|    =   |(x,y),      Tl   =   Tl(x,y) (40) 

of  3D  into a (simply or multiply covered) domain  A  of the 
(i,t|)-plane will "be called conformal with respect to the flow 
if it preserves the'sense of dotation and takes each non~ 
Euclidean angle  A  (in the- '{x,y)-plane) into the Euclidean 
angle  A.  An equivalent definition is thu following.  The 
transformation (4.0) is conformal with respect to the flow if 
it preserves the sense of rotation and if the ratio 

A'^ dS  . 

where  dS  is the non-Euclidean length of a line element  ds 
in the (x,y)-plane and •' do-,  the.Euclidean length of its 
image in the (% ,T[) — plane-, depends only upon the position (but 
not upon the direction) of  ds.  The symbol  A is called the 
local factor of magnification. 

If  D  is mapped conformally with respect to the flow 
into  A, and  A  is mapped conformally (in the ordinary sense) 
into  A*i the  resulting mapping of " D  into  A'  is conformal 
with respect to flow.  Conversely, if  D  is mapped conform- 
ally with respect to the flow into both  A  a^cL  A'» the   re- 
sulting mapping' of  A  iftto' A'  is conformal in the ordi- 
nary sense. 

Any transformation- (40)' of. E(P)  int o the ( % ,Tl)-plane 
is conformal with respect t o the flow if the -potential 
function  cp  and the stream function  \J/  considered as func- 
tions of  |  and  T|  sat isfy the differential equations (31) . 

This follows from lemma 1 proved in the appendix by set- 
ting  A = l/p,  B = T.  • •  • 
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If the. foregoing result is used and it is noted that  cp 
and  \Jf  satisfy equations (33), the•following important theo- 
rem is seen to be true: 

The ma-p-ping. of the exterior • . E.(P)  of. a. -profile  P  into 
the di st ort ed h.odogranh of a subsonic com-pressible flow 
around  P  i_s conf ormal with, respect t o thi s flow. 

Mapping of a Compressible Flow into a Domain 

Exterior to an Arbitrary Profile 

The distorted hodograph of a flow around an airfoil is 
a simply connected Kiemann surface bounded b'y a closed curve 
(the image of  P),  By a known theorem of function theory,, it 
is possible to map  H*  conformally into an arbitrary simply 
connected domain.  -Therefore, it is possible to map 3(p) 
conformally. with respect' to :the flow into the domain. 3 (H) of 
the (| ,T]')-planet .exterior to a given pro-file M . ' The mapping 
can be chos.en so that' the point %   + ±T) = <»  corresponds to '. 
the point  x + iy = oo  and that the horizontal direction at 
infinity is preserved (i.e., at  oo  the direction parallel to 
the x-axis is taken into the direct ion parallel to the  £~ 
axis).  Furthermore, by eventually changing the size but not 
the shape of H . it is possible to obtain-a mapping for which 
the local factor of magnification is equal to 1 at infinity. 
Since at infinity the metric (37) approaches the metric with 
constant coefficients 

dSs = dx3 + (1 - M|,)dys 

the above conditions mean that 

Is   + T}2-*>.co,  ££—»1,  ^£.-»0 
8x  '    8y 

M—>0,   Sü-Wl - Kg (41) 
dx By 

as 

x3 + y3- 

A transformation satisfying these conditions will be called 
airmail zed. 
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If  S(P)  is mapped conformally with respect to the flow, 
into  E(n),  the resulting correspondence "between the..points 
of  H*  and those of  E (l~i)  is conformal.  Therefore, 
u* - iv*  is a one-valued analytic•function of  | + iT)  and 
can he developed in .a Laurent series for sufficiently large 
values of  [£ + iT) ]". • The following result will "be used later, 

Lemma. Z\      If the mapping of  B(P)  int o  B (l~l)  .is. nor- 
malized, then 

>u* - iv* = a* - *r*  =i  + . . .      ' (42) 
••  " • STT ,| + iT) • . 

where " ; • .•      .; 

\ =7l - M^SJk r U3) 
. «loo ' • " 

and 

r '=  / u dx' +' v, dy (44) 

i s the circulation of the com-pressihle flow. 

The proof-.will he found in the appendix. 

Conjugate Flows- 

Criven a compressihl'e- f low' (in.' the (x,y)-pl.an.e ) around 
the profile.  P. and an incompressible flow (in the (|,T,)- 
plane) around a pr of iie' H'.' The complex-potent i.al of the in- 
eompressihle .flow will' he deho-ted. hy {}(£)   = cp± + lty± .      Its 
complex velocity is' - . .'. 

Since it is assumed that at infinity  6i •= 0*  ß  can he 
written in the-form 

n(^ "   4ifoo 
&(^'   ß,(co) = X 

The   two   flows   will   he   called  'con.jugate   (modulo   n),    if 
there   exists   a  r.eal   numher   . n, 
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'..'.''  0 '< n < 3 

such that'.the transformation' 

.'"/,!'. u'i   -   ivi.= <u* - iv*)n ;. _ (45) 

takes the distorted hodograph  H*  of. the compressible flow 
into the hodograph  H^  of the incompressible flow.  The con- 
nection "between conjugate flows is shown in figure 3. 

The mapping. (45) defines a mapping of- £(P)  into  B (fl) . 
This mapping is conformal with respect to the flow around  P. 
Tor so is the mapping of  E(P)  into  H*; and the mapping of 
H*  into  Hj_  (given by (45) as well as the mapping of  Hj. 
into  3 (Hi)  are conformal- in. the ordinary sense.  The mapping 
of  E(P)  into  !(M)  preserves th-e 'point infinity and the 
horizontal direction at infinity (for at infinity "both flows 
are horizontal).  On  P  (onfl)  &(6^)  is the slope of the 

profile.  According to (45) the.slopes at corresponding 
points are connect ed~. by' the.r elation 

• 6i = n6 (46) 

(The slope is defined as the angle between the tangent to the 
profile and the positive x-axis; the tangent pointing in the 
direction of the flow.) 

Conversely, if it is possible to map  B(P)  into the do- 
main '3(n)  in-the,'( |,T))-pläne ' exteriar to a profile fl ,  by 
a transformation'which is   conformal with respect to the com- 
•pressib'le flow around . P.,  which preserves the point os  and 
tho' hori-z-'ontal direction at -infinity, and which changes the 
slope of  P  according to (46), then the flrw around  P_ is 
conjugate (modulo n) to an incompressible flow around H 
which has stagnati.oh podnt-s a,t the. points into which the 
stagnation points at  P  are taken and the direction at in- 
finity of which is horizontal (provided such a flow exists). 

t     * • 

Tor, let  &(£)  be the complex potential of s.uch a flow, 
&• (co) = 1.  Set 

uj_ - iv. = d*£ G'(£) '• 

The mapping of  E (fl)  into  H*  is conformal - that, is, 
u* - iv*  is a one-valued analytic function defined in  E (H) . 
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Therefore,  &._= -Im lög(u* - iv*)  is harmonic in  E(n)j  ne 
coincides- on. 1 I • with the.harmonic function 
6i = -Im logdi^ - ivi ) .  Therefore, (46) holdB throughout- 
3(n).  Since  n log q*  is conjugate to  no  and 
log iq.i = log l.'ui - ivi 1  to  6i 

log q.. = n log q* + constant 

The above constant must vanish, for at infinity 

."' -*.&n a   *i,o> 

Therefore ; 

. <l*n = q.i (47) 

and   by   (46)   and   (47),    (45)   holds. 

•     If  an   incompressible   flow   is   conjugate   to   a   subsonic 
compressible   flow,   then 

•'- '  • *±1M1L<  K    . (48) 

where,     q^; max     i& t.h.e  maximum   spe.e-d .and    K     depends, upon     n  . 

and   the   stream  MaciL-ßumler " Ma     o-f   the'   compressible   flow. 
For     <l*max     ^ust -be   less   than   1   (cf-.   (15)')   and   therefore,   "by 
(47) 

a. \  a*       /   " '» *i , » N   <T CD 

Note   that      q*     is   a   function   of   ' a        and   therefore   also   of 
^- CO ^-OO 

«CO. 

If the incompressible flow with the complex potential 
Q( £) is conjugate to a given compressible flow1, so is the 
flow with the complex potential 

j n(A£),  A > 0 
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for ft has the same hodograph. ' Thus the conjugate profile I ' 
can be chosen so that the mapping of  E(P)  into  E(n).'is 
normali zed. ... 

If the incompressible flow around- H  con jugate t o." a. 
compre ssi"ble flow around  P  is known, then the velocity Sis- 
triimtion (and therefore the pressure distribution) around  P 
can be immediately computed.  lor (46) gives the correspond- 
ence between the points of M  and  P,  and the speods at 
corresponding points'are given by (47).  However, the present 
method has not been developed sufficiently to permit a solu- 
tion, of the direct problem:  to find the incompressible flow 
conjugate to a compressible'flow'around a given profile  P. 
The following sections contain the solution of the inverse 
problem:  to find a compressible flow around a closed profile 
conjugate to a given incompressible flow, and the discussion 
of the existence of conjugate flows, which is by no means 
self-evident. 

ii:-. CONSTRUCTION OF SUBSONIC FLOWS AROUND A PROFILE UNDER 

THE ASSUMPTION OF THE LINEARIZED EQUATION OF STATE 

Simplifications Resulting fr-om the Assumption  V = -1 

Throughout this chapter the pressure-density relation is 
assumed to have the linearized form - that i's,  *Y  is set 
equal :t o ~1.  Under this assumption it can be shown that under 
"very general conditi ons .each .compressible flow possesses a 
conjugate incompressible flow and vice versa.  The inverse 
problem can be solved completely and in a closed form. 

The assumption  V = -1  implies the following simplifi- 
cations . ' ' 

1. The differential equation of the potential  cp  in the 
physical piano takes the form 

(1.+ Vs) £&,.- 2uv '9ÜJB- + (1 + 'us) i^ß = 0 
ax3     ,öxay    _     bys 

u =-22; '" ->'• ='Scß (50) 
9x       by 
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(•C;f..  (3,3)   aadfc..(j.O):. )   Thus-.the- surface 

z «= <p.(x,y). <51:) 

(potential surfa'c'e): i's! "a mini aal surfac-e (surface of vanish- 
ing mean curvature)/        "  " 

2, The non-2J.ucli.deah -length '• dS of a line element ds 
in the (x,y)-plane (cf. sec. Transformations Conformal with 
Respect to a Given Plow) "becomes equal to. 

dS = dl J\  - M; 

where     dl     is   the  Euclidean' lehg't-h   of  the   line   element   on 
the  potential   surfaces   the  projection   of  which   is     ds..        . , 

. . :3?or,,   if ...t.he, angle . 1). et. we an   the   direction   of   the   velocity 
.ve&tor   and    .ds    'is   denoted- by-  x,      it   follows .from   (37)   that 

. dl3   =   (*1- + u3)dx3  +  3uv  dx   dy  +   (l  .+   v3)   dy3 

,••:    "•.-.•. .=   dSS   +   (u   <£x-'.+   v  dy}-8.     . .•;...".'• 

=   dss   +  ds2   q.2   cos3 \ 

• ds2 (r->?• sin2 x)   ": 

1   -. M3 

.a-sr. • 
!-•-   M'" 

3. The term cp + ity  is an analytic function of  u* - iv* 
and of the com/pie^ var-i.ab.ie in any plane into -which 3(P)  is 
mapped conformally w.ith respect to tke flow.  (Cf. (30) , 
(33").) ~ •' 

Bxisteace- of' Conjugate Flows 

It will he shown presently that to any compressible flow 
around a profile  P  in the z-plane (obeying the linearized 
equati-on .of state) there .exists a conjugate -flow of,,-.an, incom- 
pressible fluid around a profile i~  in the  £-plane, provided 
either of the following two conditions is satisfied. 
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(a) Ihe compressible flew is circulation-free.  In this 
case the modulus  n  can "be chosen at random.  In particular, 
it is convenient to set  n = 1. 

(b) The compressit>le flow possesses a circulation and 
the Mach number at infinity is restricted by 

H.ao<JW*   = 0.866 . . . (53) 

In this case the modulus  n  i.s given by . '     . . 

n.= y~-— (53) 

(of. fig. 4.y 

Tor the proof, map ' E(P)  .into the exterior of a circle 
X  +'  X •   = R   in the Z-plane,(Z = X + iY,  R~ being a conven- 
iently chosen constant) by a'normalized transformation which 
is confor:..ial with respect to the given flow.  Then the corre- 
spondence between the di st or.t ed , hodograph  H*  of. the com- 
pressible flow and the domain  [Z) > R  is conformal - that 
is,  u* - iv*  is an analytic function of  Z.  By lemma 2, 
this function has th-e form 

u* - iv* = q* - Ü. -  + . . . (54) 
•y       ' 0° .   8-TT.. Z 

Tx     being   given   by   (43).      Furthermore,'    cp  +   i\|/     is  an  ana- 
lytic   function   of     u*   - -iv*     and   therefore   also   of     Z, 
[Z]   > R;      \|/  =   0     on      [Z|   =  R     for     ^ =  .0     on     P.      If     Z     goes 
once   around   the   circle      (Z]   =  R,     cp   +   i\(/     increases  by     V. 
Next , 

lim    ^2 =       lim     fe £x  + M  9zl e   a 
.       .   Z *-aj.3X     .   Z   __>   oXdx.   eX 9y   dXj 

lim    |ffi =        lim    .iiSB  **  +   9ffi   *£\ =   0 
Z—»oc SY       z_^co'lax   SY     •   öy'   ÖYJ 

for   the   mapping  is   assumed .to   be   normalized,      it   follows 
f hat       . ... 

00 
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cp   +  i\|/   =   q^f Z   + 5—j  ~ IE- log   Z   +   constant   = C2X(Z) 
/• Z /       '2TT 

Thus     cp +   i\)/     Is   in  the   Z-plane   the   complex potential   of   a 
flow  around  the   circle      |.Z"]   =  R.     This   flow  necessarily  pos- 
sesses   two   stagnation   points   on' th-e   cirple      I Z 1 • = •&;      namely, 
the   images   of  the   stagnation  pointB   on     P.     For   at   these 
points   the   lines     \J/ =   constant      intersect   the   circle.      It 
follows   that ...•-..- 

'*<?+'*»> -q   fi-^V„.iri    • (55) 
dZ      H°° \    Z3/   2TT Z . 

vanishes at the same points  (Z = S.lf Z = ,'S2, S1   =  -S3)  as 

does  u* - IT*. .. ;. : 

Assume,that there exists an•incompressible flow around 
a profile • f~i in the £-plane which is conjugate (modulo n) 
to the compressible flow around  P.  Let' 

Z *= Z('£) 

map  E(n)  conformally into  [Z 1 > E  taking . £ = en int 
Z = eo.  Without- loss of generality it may be assumed tha 

Z^co.) = 1: • 

Then  the   complex potential     f}( t)   =  Qi   +   i\ki      of   the   incom- 
pressible   flow must,  in   the   Z-plane, be   of   the 'form- 

Q  = iL»   (cp  +•  l^)     ' 

The complex velocity -of: the con jugat e flow,  ui - ivj., 
is given by 

On the other hand, 

u, ~ iv4 = (u* - "iv*)11 
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Jheref or e 

so that 

dZ   dz/dt    qB    dZ    / ^  " 
±V   } 

:i(Z)   =  /q** 1 - R /Z ..~'iTl2jx.  :^Z dZ        '(56) 
W      (u* - iv*)n 

The numerator of the integrand in the above formula 
possesses simple zeros at the two stagnation points.  It can 
"be easily shown that: at the two stagnation points (in the Z- 
plane)  u* - iv* ' vanishes of an order not higher than 1. 
For at these points  Im log(u* - iv*) = -9  possesrss jumps 
of magnitude  efn, e i*n  and  esir  "being the angles at the .' 
stagnation points on  P.  Therefore  Ee log (u* -, iv.*)- = log q* 
behaves at these points as  e^log'lz - S^ j .  And it haß "been 
assumed., that  P  possesses .only sharp edges if' any, so that 
0 <V Ei-< 1-.  It follows that at'. Sx     and  S3  the integrand 
hecomes infinite of an order less' than 1,  provided ' 0 < n < 2. 
At all other points  Z, |Z) > K,  the integrand is different 
from both  0  and oo.  Hence the integration can be performed 
also along the circle  Iz) = E. 

Uov, since H was assumed to be a closed curve, the 
integral (56) must vanish if the integration is performed 
along the closed circle  \Z\   - E.  By (54) 

 ' 1 f •  " '"1  /   JSL'iEk-l .      \ 
(u* - iv*)n   QL*

11
 V    a» 3n Z       7 

so that the integrand in (56) equals 

.......    ,   i + (^.JL)_LI+ / .  . 
*«    4»  2TT Z 

In order that the int egral' taken' along a closed curve should 
vanish it is necessary and sufficient that 

n3\   r 

q*    q 
= :0, 
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or,   lay. virtue   of   (43) ,   that 

uyi - Ml,-   l)r   =   0 (57) 

T = 0  or  n  is 
case the condi- 

This' condition will "be satisfied^ if either 
determined according to (53).  In. this last 
tion  n < 2  yields the "bound; (52) f.or  Mp,. 

Conversely, if (57) holds and  n<-S»  the function (56) 
maps  [ZJ > E  conformally into the exterior of a closed 
profile n  in the  £-plane.  (Note that the derivative of 
this function does- not vanish.')  Thi s- mapping satisfies 'the 
conditions 

•.£(»)- = co, .•£.'(£.)' » V 

The   resulting  mapping   of . E(P) 
with  resxi.ec't   to. the   flow .around 

into     B(l. 0   . is   aonformal 
P.      Obviously,      . ,  .    ' 

t *P- 

•[ ß,    Z(J) 

is the complex, potential of an incompressible flo.w around 'I I. 
The .complex velocity of this flow is equal to Cu* - iv*)n. 
Thus the -flow.is cpn-jugat-e to the compres.sible flow ar.ound  P 
and the. assertions, formulated !#• the "beginning of this sec- 
tion are proved. .".  . • 

Properties of the Conjugate Flow 

From the construction of the conjugat.e- flow given, i-n' the 
preceding section, it follows that the circulation of the 
conjugate incompressible fJLpw -is equal tp"-.. 

(r 
n 
is 

q*n 
H
 CO 

(3 

•r; .= 

. (i+*/i - üF)n     •• • 

being the circulation of the compressible flow), provided 
has been chosen so that the mapping of  3(P)  into  E(n) 
normalized. 
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For the conjugate incompressible flow the rat'i'o 
<3U ma-^/^A cannot exceed  K = q*"-11.  (Of. end of pt . I.) 

CO 

lor  Y = -1, 

1 +J 1 ~ K%     -„  _ = , ; Z = t, ^v •*• - "9° for  n = 1 
M, 

M^ , : i 
V'<5.8) 

(The yalue.S" of . K' are plotted, in fig. 5.) 

It should he noted that the profile  H  constructed in 
the preceding section is necessarily; closed hut need not he 
simpie - that is,  ' I  might intersect itself, in which case 
E (n)  would he..partly multiply covered.. .For this reasoji such 
physically impossible flows were included in' the discussion, 
It is easily seen that  l~I "will always he simple if P  is 
convex. 

Solution :of the'-Inver S3 Problem 

Suppose that an incompressible flow around a profile  ,—' 
•in the' £-plane is- given and it'is known that this flow is 
conjugate"(modulo n) to a'compressible flow around a profile 
P • iri llie''' z-plane. •' This section contains the derivation of 
th'e formulas which- permit finding P  and the compressible^ 
flow around  P.  It will turn out that these- formulas always 
yield a coiapressl'ble flow around a closed profile, even if 
n and the flow around l~l  are chosen at random. 

Let the complex potential of the incompressihle flow he 
given in' ihe form- _'  • '"•'.'' 

n(S)"=-eii-|0S <*Uh      <*'(»> - 1   •      • •  - 

Since cp + i\|/ (complex potential of the compressible 
flow) considered as a functipn'.';o'f £ is' analytic and real 
on I I and since d(rp + i\|/)/&£ vanishes at the stagnation 
points of the incompr e ssi-bl-e .flow, 

. r ••        ? + i*B oa(J)  .-•••• 
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0     "being  a  positive   constant.      Without   loss   of   generality  it 
may toe   assumed, that, the   mapping   pf     E(P)    -into     SO 0      is 
normalized.   • Then ' ••' •-•      ' "    ' I.   • . ' ' 

0   = *e 

Now,   let     ds     be   a   line   element   on     P     and     dff    the 
corresponding  line   element   on.O»     Then 

On  the   other  hand,   on     P 

dcp 

Since the increase of  cp  on  dB  is equal to the increase . of 
ep  on  dc,  and since  q, == q.*nr 

By (18) 

so that 

#n 

der  a.  - a    q*n  q 

a   2        • 

i     4 

ds   q.*11**1 - q*a+i 

^••0"  .-#n-i _;.-..*h+i •^r * -••i; oo 

i-i/n ••' '-i + i/n 

a*n-i _ a*n+i 
(59) 

Since 

.(•39) can "be written as      .. ,' 
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ds   _ _ 
der  =  1 ^T-^ll&'CS)!1-1^ - n3|G'(£)]1+l/u} (60) 

where     p.   »   q*  -   that   is, 
00 

M (61) 

1   +^1   -   M s 
CO 

Next,   let      dz     and     d£     he   the   complex  line   elements   on     P 
and   i—l,      respectively: 

dz   =   ds   e1^   »   ds   e16i/n 

Then 

Since 

d£   =   dff   e- 

dz   = l£ der  ei0i/n 

d<7 

i64 -16, |fc'(£).l     =   <*'(£)   exoi   =   &'(£)   e-10i 

(63) 

there   is   obtained  "by   (60)   and   (62) 

dz   = -I— (G'U)1""1'11 a£ - »s a.(01+l/n at) 

Integration   yields   the   following  representation   of   the   pro- 
file     P: 

z   B   constant  I   /&'(£•)*"»'* "AC   -   U*    A'(t)1+l/a   dt]     (63) 

the   integration   heing performed   along   l I,      (The  value   of   the 
constant   factor   affects   only  the   size   of     P.) 

Por   a   circulation-free   flow  and     n.  =   1 •   this   formula 
simplifies   to 

z   =   constant   ^ £ -   \i,3   /* G • 3   d £   j (64) 
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(64)   and   (6l)   are   exactly  the   fornulae   given  In Tsien's 
paper   (reference   14). 

Parametric  Representation   of   Subsonic   Compressible   Flows 

Formula   (63)   has  "been  derived   under   the   assumption   that 
the   integration   is   being performed   along     I t    and  that   the 
existence   of   a   conjugate   compressible   flow  is   known  before- 
hand.      Both .conditions   are  unessential.     For   the   following 
general   result   holds: 

Let     G(£ )     be. the   com-plex -potential   of   an   inconrpressible 
flow  around   a. pr of ile    H     in  the      £ --plane , 

G'(ep)   =   1     • (65) 

Let      M^     be   a. real   number- such   that 

0<MCO<1     if     G     is   one-valued, 

0 <  M^ <y 3/4     if     G     is   multi-valued. 

Set 
Mm   •   "    - v . 

>=  J=^== (66) 

|   1   +   8, •   0 <  6   < 1,      if     G     is   one-valued 
n   = J 

>{  f**(t)*-X,lk±t   -»*    A.(t)1 + X/Bdt} 

(67) 

[_ l//l  -   M3^   if     &     is  multi-valued 

K - y.~a (68) 

If for    I  € 1 (n), 

lff'({)l<I (69) 

then   the   function 

(70) 
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0 >  0,      maps     B (ll)      in   a   one-t o-one   manner   int o   the   exterior 
E(P)      of.  a   closed  profile     P     in. the     z-plane   taking     £   = oo 
int o      z  —j» co f      and 

co =   2Q   ^ Be   &(.£) (71> 

considered ag. a function of  x  and  y  i_s the potential o_f 
a. subsonic compressible flow around  P  (obeying th6 linear- 
ised equation of state) of. stream Mach number  M^. 

The two flows are conjugate (modulo n) .  The mapping of 
E(P)  into  ECO)  ij. normalised by choosing  0 = l/(l - p.3). 

The proof of the mapping properties of the function (70) 
will be found in the appendix under 0.  Since the mapping of 
B(l~)  into  E(P)  is one-to-one,  cp  may be considered as a 
function of (x,y).  Squations(70) and (71) may be rewritten 
in the form 

x-= He f(£),  y = Re g(£),  cp = Re h(£)       (72) 

where the analytic functions  f, g, and h.  are given by 

($) = ~iC A<J'lv"a/n + ^ (jii+»/n> d£ 

f 

S 

h(£) = 20 M, Q 

Since 

f'3 + g<3 + h'3 = 0 

(72) is the well-known Weierstrass parameter representation 
of a minimal surface.  Hence,  cp(x.y)  satisfies equation (50) 
and therefore is a potential of a compressible flow. 

It is shown in the appendix under C that as  £ —> «» 

||->C<l-u.2),   fj->0,   ff~>0,   |t^>0(l+ll-) 
°S dt)        3|        3rj 
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(Of.   (03),)     ?y   (65)   and   (71)   this   implies   that   as     z  —5> oo 

->   0 3cp                  2y, acp 
ai""i- u.3' ay 

Thus, at infinity the compressible flow is parallel to the x- 
axi s and 

00 

- M.3  7l - M^ 

so that  M   is actually the stream Mach number. 

It is also shown in the appendix under 0 that the direc- 
tion normal to H  is taken into the direction normal to  P. 
Since the normaJL derivative of cp  on f~l vanishes, ,so does 
the normal der^Lyative of cp  on  P.  Thus  P  is a streamline 
of the compressible flow. 

The fact that the two flows are conjugate follows simply 
by comparing the velocities at corresponding points of  P 
and n,  The details of this computation may be omitted. 

Jroa the preceding section it follows that the paramet- 
ric representation (70) and (71)-yields all flows satisfying 
the conditions stated in the "beginning of part II.  (Note 
that neither  H 'nor  P  are necessarily simple curves.) 

Construction Of a Compressi'ble Plow around a Profile 

Similar to a Given Profile 

Suppose a profile . Pj.  and a point  S  on this profile 
are given and it; £s desired to find a subsonic compressi'ble 
flow around a profile  P- similar to  Pj_,  possessing a pre- 
scribed stream Mach number  MjHg, < ^3/4)  and a-stagnation 
point near the PP,$.nt  S.  (Since  S  is determined by the 
angle of attack tfie last requirement determines approximately 
the position of  ?  with respect to the undisturbed flow.) 
This problem <j£,n ^>e solved as follows. 

Por the sake of definiteness it will be assumed that the 
profile  Pj_  hg/s one sharp (trailing) edge.  It may be as- 
sumed that the function mapping  Pj.  conformally into a circle 
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is known.  In fact, this function can be easily computed.- 
(See reference 13.;  The first step consists in forming an 
incompressible flow around  Pj.  which possesses stagnation 
points at the trailing edge and at  S.' The direction of 
this flow at infinity is taken as the  Indirection in the 
plane of  Pj (£~p.lane).  Now, if  E^)  is mapped into 
)Z( > 1  "by an analytic function ; 

'  Z = F(£.) (73) 

which satisfies the conditions 

Z(w) = CO,   Z' (a.) > 0 

th.en the, sharp, trailing edge and the point  S  are taken into 
the T>oints  e~ict,

f ~e
ia, respectively, , a  being real (cf. fig. 

6). "••.••'    • • • 

From I'gg is determined the modulus n "by (53). Now, 
let' Oj, • and  G3- he two circles- pas sing . through. the points 
e" •  and  ~e-  ' which • inter sect at ' the angle nn . ' The. 
function'    ' • .      . ' •     .• -  • -     ,•-...    k   ;. 

••   ' •     • •    • :  ' £;= Ji(z)  •••..• 

inverse tp'. (73) maps the infinite domain bounded by an arc 
of  Oj  and'an arc of  0S  into the eiterior of some closed 
profile Pt .  Profile  l~I possesses two singular points:  the 
trailing edge which coincides - with th-e trailing edge of- Px 
and the point  S.  The angles there are  nß  and  nn,  ß 
being the angle at the- trailing edge , .of;.. Px . 

Since.' a domain bounded by two- circular arcs can easily 
be. mapped in-to- the exterior of a circle, it is easy to .com- 
pute incompre ssible. flows around' l~l . ... 

From  M^ is determined  q'^ (by' ('11))  and  CL^ (by. 
(18)).  Let  G-(^)  be' the complex potential of an incompress- 
ible flow around T1. which' satisfies the Kutt.a-Joukowski 
condition at the trailing edge a.nd the condition 

G'(») = 1 
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It is easily seen that this flow possesses a stagnation point 
at S. The same is true for the flow with the complex poten- 
tial 

ITow a compressible flow around a profile  P  is con- 
structed which is conjugate (modulo n) to the above incom- 
pressible flow;  P  is given "by (70).  The velocity potential 
is given "by (7l).  The distorted speed  q*  of the compress- 
ible flow at a point  z  of  P  is equal to 

,1* = 1il/n 

cu      "being  the   speed   of .the   incompressible   flow  at   the   corre- 
sponding  point   of n   ;     from     q.*,      q     i s'determined "by   (18) . 

Since   the   angle   "between  the   x-axis   and   the   tangent   to 
P     at   a  point      z     is   equal   to     l/n     times   the   angle  "between 
the   |-axis   and  the   tangent   to    R     at   the   corresponding point 
£,      it   is/seen  that   the   profile     P     will   possess   only   one 
sharp   edge,   the   angle   there   "being     ß. 

The   profile   distortion   (i.e.,   the   difference  "between     Px 

and     P)   is   due   (l)   to   the   difference   "between     P2     and     I~l    and 
(s)   to   the   difference   between    n     and     P.     This   distortion 
will   he   small   if     M^     is   not   too   large.      lor   then     n3     is 
small   and     n     close   to   1.      (See  table   II;   in   fig.   4,      n     and 
H2      are  plotted  as   functions   of     M^.)     Therefore,   the   circles 
C1(   Og     are   close   to   the  unit   circle   and    (~1     close   to     P^. 
Secondly,   1-l/n     will   "be   small   and   therefore   the   first   term 
in   (70)   will   "be   close   to      £     while   the   second   term will   "be 
small   as   compared   to   the   first. 

Of   course,   it   is   possible   to   construct     f~l     in  many 
other   ways.      If  the   flow  around     P2     which  has   a   stagnation 
point   at      S     is   circulation-free   (i.e.,   if     a  =   0),   it   is 
.possible   to   set     n  =  1.     Then     Px     coincides  with fl . 



36 NACA TK.N.o. ..9 69 

' Alternative Formulas 

It Is useful to write the formulas transforming an in- 
compressible flow into a compressible flow in <a different 
form.  The (dimensiönless) speed at infinity, q^  will "be 
used as the parameter characterizing the flow. 

.from formulas (52),' (6l), and (ll)'it follows that 

n = yr + q* 

Ha. 
n ~ 1 
n +• 1 

(74) 

(75) 

The function mapping the profile H  into the profile  P 
takes the form 

z = iLJ_i /'&.(t)
1-1/a d£ ~ n +1 ^&'(n1+l/n «u    (76) 

The potential at the compressible flow is given by 

cp =;/ns - 1 a (77) 

(The arbitrary constant appearing in (70) and (71) has been 
chosen as, l/(l -.M>3) = (n + l)/2).) Finally, the speed  q 
of the compressible flow around  P  is given by 

1 = ...»(H^-*<fl,(t)l-x/n 

i - (*• - x>\fe'(^ s/n 

\n + I'.1 

(78) 

This follows, immediät ely from formulas (47) and (l8),.by 
noting that in this case 

^   = un Iß' 
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Tsien's simpler formulas which are valid for the case 
of a circulation-free flow may he rewritten similarly. 

n + 1 *   n - 2 

2 

i * -   -   - —  

ro.  -   1' 

&'(£)* it 

> (79) 

p  is given by the same -formula as before (.formula (77)). 

III. CONSTRUCTION '.Off SUBSONIC FLOWS AROUND A PROFILE 

UNDER THE ASSUMPTION OP THE ACTUAL EQUATION OP STATE 

Existence of Conjugate Plows 

In this chapter it is assumed that the pressure-density 
relation is not of the linearized form hut a general one, 
say the polytroplc relation (Y > l).  It will he shown that 
the construction of a compressible flow for a given conjugate 
incompressible flow reduces t;0 the solution of a boundary 
value problem for a line'ar partial differential equation in 
the physical plane of the conjugate flow. 

The discussion of the existence of a conjugate flow for 
a given compressible flow around  P  can'be carried out in 
the same way as previously.. The essential difference con- 
sists in the fact that.so far it has been impossible to.char- 
acterize completely all compressible flows possessing conju- 
gate incompressible flows.and to determine a priori, the 
modulus  n. 

Consider a compressible flow around a profile  P  in the 
z-plane.  It has been shown that.it is possible to map  B ([""!) 
into the exterior of a circle \Z\   = R  by a transformation 
which is conformal with respect to the flow' and normalized 
at infinity.  The two stagnati.on points of the flow are taken 
into two points 
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[zx  = Ee-iai   Z3 = Ee-i(a+8) 

The flow will be.said to satisfy condition  A  if 

8 = TT - "2a 

that is, if 

Z  = -~Z 3      i 

Assume   that   condition     A     is   satisfied,   and   set 

' .„•..;• F     =   -4TT   q_ ^ R   s i n . a • (80) 

If 

o<r IT < s/i - MS (si) 

(r  "being the circulation of the compressible flow), the 
flow will be said to satisfy condition  B_.  If r = 0, condi- 
tion  B  implies that  ra = 0'. 

In the case *Y = -1, <p + i\|/ i s an analytic function of 
Z; condition A is always satisfied and r is equal to r» 
Therefore condition  B  is satisfied for 

r 0  and  for  r t   Q,  M^/FTi 

It is conjectured (but has not been proved) that  A  is 
always- satisfied and  B  is satisfied if M&    does not exceed 
some limiting value. 

Condition A  is' certainly satisfied (by reasons of sym- 
metry)- if either of the two geometrical conditions hold*: 

(i) P  is symmetric with respect to the i-axi s and the 
flow is circulation-free. 

(ii) Both  P  and the flow around  P  are symmetric with 
respect to the y-axi s .  (ThiB type of flow includes flows 
with circulation.) 

Flows of type (i) obviously satisfy condition  B.  In 
general, it may be assumed that  B  will be satisfied in many 
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cases.  For the flow satisfying the linearized equation of 
state is a rather good approximation to the flow satisfying 
the actual equation of state and therefore rs  should not 
differ too much from P. ' 

If a compressible flow satisfies "both conditions  A    - 
and  B,  then it is conjugate (modulo n) Jbo. an, incompressible 
flow ar ound a profile  (~1 ijl the f -plane.  If r = 0,  n  i_s 
arbitrary and may, be chosen as 1.  If. T   >f   0,     n  i_s given by_ 

» =^#- . •'1 ••'•••       (.82) r yi - K 

Th,e proof is' almost exactly the same as the one given 
for the special case  Y. » -1  and it will, suffice tp sketch 
the argument. 

Let  nx.  be the complex potential of' a flow around 
|Z[ = E.  which has stagnation points at Z±     and  Zs  and the— 
velocity  q^ at infinity..  Then Q   has the form 

0, = q (Z + £f^ - irg log Z + constant lo=,\-Z/    2n  - 

Ta  being given by (80).  As before,  u* -' iv*  is an analytic 
function of ' Z     and has' (according to .Xemma 2) the form (42). 
If there exists a conjugate Kmodulo- n)' incompressible flow in 
the - £J-plane (around a' profile I~l ), its complex- potential' Cl 
considered as a function of  Z  must have the form 

Q  = ^Qx  (X  a real constant) 

As before, the function which maps  \Z \ >  E.  into  E (f*l)  will 
be. given by 

£  (Z) = \       -iii (u* - iv*)-n dZ . (83) 

and the requirement that  f~l be a closed profile leads to the 
condition 

nTi  r 3 

q*    q 
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or 

*r 7TT~F = r8 (84) 

which is satisfied if either 

' .   r = r =..0 a 

or  n' i s determined, by (82.). 

Conversely, if (84) holds, formula (83) yields a closed 
profile  f~l  (note that by.(8l),  0< n< 2) and the incom- 
pressible flow around l~i  which .has the velocity  q,   = q*n 

X , CO Co 

at infinity and stagnation points at  £(ZX)  and  £(Z3),  is 
conjugate (modulo ri) to the given compressible flow. 

It can be easily seen that the conditions  A, B  are not 
only sufficient but also necessary for the existence of a 
conjugate flow. 

Solution of the Inverse Problem 

Suppose that an incompressible' flow around the profile 
("I in the  £~plane is conjugate (modulo n) to a compressible 
flow around the profile  P  in the  z-plane.  It has been 
shown that <p  and- \J/  (potential and stream function of the 
compressi'ble flow) satisfy the equations (33) in the distorted 
hodograph plane.  Si:nce the correspondence between the dis- 
torted hodograph  E*  and  B(I I)  is conformal, it follows 
that qp  and \|/, • considered as functions of  £  and  T}, sat- 
isfy the equations 

hi     l 'an 
(85) 

and the second-order equations 

J3. 
91 

£{* tf}vM*-^=0        . (87) 
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If the incompressible flow around  f~l is known,  T  is 
a known function of  |  and. T).  For. T "is a known function 
of  q  (see (27)) and therefore also of  q*  (see (14).  And 
at corresponding points of  E(P)  and  E (T~l) ,  q*  and  qj_ 
(the speed of the'incompressible.flow), are connected by the 
relation 

*1- * *** • (88) 

Therefore the equations (8.5.) to (87) are linear . 

The boundary conditions for  cp  and • \J/  are 

\l/ = constant,  |31 = 0 .   (89) 
o y , 

p± •'....     •   • •  . 
,5L  indicating differentiation in the direction normal to R , 

At infinity cp  and  ^  must satisfy the conditions 

£&   > 0,. > 0,' &£ s> 0 (90) 

and .- 

ff —>0,  f*_>03> 0 (91) 

where  Cx  and  C3  are positive constants.  This can be eas- 
ily verified by noting that the mapping of  E(P)  into  E (["!) 
preserves the horizontal- direction at infinity..  The »iuneri- 
cal values öf these constants are^of no consequence, sr-.nce 
both the differential equations and .the boundary conditions 
are linear and homogeneous. 

.Junction \J/  must always be one-valued;  cp  is one- 
valued only if  r = 0 •  Moreover,  cp  and  \j/  must satisfy 
the conditions: 

grad3'' cp < 00,   'grad3  ty < » (92) 

Thus, it is seen that the equations (85) can be inter- 
preted physically as the equations of motion of a compressi- 
ble fluid of variable 'density  p' which.-;! s a given function 
of Bpace: 
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p (i.Tl) =    P (93) 
yi - M3 

("I is a streamline of this flow and at infinity the flow has 
the positive  |-direction. 

Assume that cp  is known as a function of  |  and  T) 
aud set 

(q  is the speed of the fictitious corapressi"fale flow of den- 
sity  p).  Let  ds  be a line e-lement on  P  and  da  the 
corresponding line element on f~l ,  Then 

IS-'* a s 

dcp 
do"   4- 

so that 

d_s _ J[ 
da ~ q 

Since the angle "between ' ds  and the x-axis is  6  and that 
between  da  and" the  g-aaLis"'i s  6^ = n6 ,  it is seen that a 
representation of the profile  P  can be obtained by 

z   = / 1 aiS da (95) 

The connection between the profiles  P  and l~l  can also 
be expressed by the formulas 

(96) 
EP              q e i 
•"   —      SS      H     —•—• •?• **•• 

*n    • *   . &i a 
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where Ep -is the 'radius of curvature of the profile  P  at 
some point ' z  and  Hp-j the radius of curvature of n at 
the corresponding point  £ .  Angle  8  is known along i~l and 
so is  q,  for  q* = qi/n.  If • q  is known along f~l ,  then 

the profile  P  can be constructed graphically, using (95) or 
(96). 

Solution of. the. Inverse Problem (Continued) 

It has been shown in the preceding section that the con- 
struction of a compressible flow conjugate t o_ a given incom- 
pressible flow depends upon the solution of a classical 
boundary value problem for a linear partial differential 
equation (equation (36) )' "or equation (8?) .  The integration 
may be performed not in  E(n)  but in a simpler domain, say 
in the domain exterior to the unit circle.  For a oonformal 
transformation of • E ({""!)'' into such a domain takes equations 
(86) i '(87)'int o equati ons of the same form and does not af- 
fect the auxiliary conditions. .Nevertheless, the actual in- 
tegration would be extremely laborious, especially in view of 
the fact that 'the coefficient  T  would be -given -either numer- 
ically-or .by a very complicated analytical expression.  Fur- 
ther research is necessary in order to reduce the computation- 
al 'work to an acceptable minimum. 

The physical interpretation of equations (85) given in 
the foregoing shows that these equations can be solved mechan- 
ically by G-. I. Taylor's well-known 'method of the "electron.' 
lytic bath".,(See reference 14.)  It should be noted that, 
whereas Taylor applied his method in order to obtain a se- 
quence of successive approximations to the solution of the 
direct problem (i.e., to the computation of the compressible 
flow past, a given profile), in this case the method lmmedi- 
.ateiy furnishes.the exact solution of the inverse problem. 

"; . .'  For slow flows (i.e., for flows where the local Mach 
number is small) the following approximate method can be 
used. 

, The coefficient-'. T".in the equations (85) is equal to 1 
for  M = 0'. and decreases very slowly as  M  increases to 
about Q..6,   as seen from table I, where the polytropi.c reia- 
tionlwi.th  Y.= 1.405  has been assumed (of. also, fig.' Z) . 

Therefore, for low Mach numbers, the density p "of the 
fictitious flow in the  £-plane (see preceding section) is 
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almost constant so that  q^  will be a good approximation to 
c[.  Replacing  £  by q±   =   q.*&  in the formulas (95), (96) 

yields 

and 
"J « 

e         < 1U 

H-p            qi*n 

«     ~ n            ' Rn        4 
e 

6i " 

1 
n 

(97) 

(98) 

Sinoe     is known as a -function of  a*  and therefore 
q.*n 

known along Tl ,  the profile  P  can be immediately con- 
struct ed. 

From figure 2, where  q.  and  ej*  are plotted as func- 
tions of  M,  it is seen that the profile distortion will be( 
small for small values of  M«, and for  n  close to 1. 

Construction of a Flow around a Profile 

Similar to a Given Profile 

Suppose it is desired to construct a compressible flow 
around a profile  P  similar to a given profile P^     and hav- 
ing a prescribed stagnation point  S. 'For the sake of defi- 
niteness it is assumed that  Px  possesses one sharp trailing 
edge . 

Since the connection between  n  and  M^  is not known 
a priori it is advisable to star.t by choosing a value for  n 
and constructing a profile D     such that if  P  is obtained 
from n. by using.(95) with this value of  n  a profile pos- 
sessing only one sharp edge will result.  Profile f~l  can be 
constructed by the method described in the preceding chapter. 
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Let •&(£)  be-the potential .of a flow around fl which 
has the-Velocity 1 at infinity... It is now necessary to find 
a value  q^ such that if  q*  is determined as 

q* = q* ( q*n  ^~| ^ V       r°°   äst y 

and  T  is determined as  T'= T(q*),  the values of  q  ob- 
tained by"integrating equations (85) to t87) will lead to a 
closed profile  P,  when substituted in the relation (95). 
At the present state of the theory this can be achieved only 
by a trial-and-efror method.  it is convenient to start with 
the value of  q*, * given by (74) and then change this value-so 
as'to obtain a closed profile' P.  Since this involves the 
integration of^the'equations (85) to (87) for different func- 
tions  0?,  the amount " of computational work is rather consid- 
erable . 

In the case of' a circulation-free flow the situation is 
much simpler for  q*, is independent of n' and  n  may be 
taken as 1. 

CONCLUDING- REMARKS - 

A method is given to transform a two-dimenBional incom- 
pressible flow around a closed profile into a subsonic com- • ~ 
pressi.ble flow around another closed profile. . The profile 
distortion is. small for small'value s of the' stream Mach num- 
ber . _ 

In the case of the actual equation of .Btate the trans- 
formation depends upon the solution of a classical boundary 
value problem for a linear partial differential equation.  An 
approximate method of solving 'this problem is indicated. 
Further -theoretical work is required in order to establish 
the validity of the method in all cases and in order to reduce 
the amount of computational work. 

It is-believed that, after the solution of this inverse 
problem is completed, a way of solving the direct problem 
(computation of the flow around a given profile) will b,e open. 

If Yon Karman>-8 and Tsien's linearized equation "of state 
is assumed, this transformation is carried out completely and 
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in a closed form not only for flows without circulation v 
(which was already done by Tsien) "but for flows with circula- 
tion as v:eli. 

Concerning the applications of the linearized equation 
of state (*Y = ~l) the following may be said.  This equation 
of state can be applied consistently.  But, it also seems 
worthwhile to try to use the assumption  V = -1  only in 
order to obtain the values of the d imensi onle ss speed q 'and.tö 
compute tiio resulting Mach 'number by means of the rigorous 
equation of state. 

Other applications of solutions based upon setting 
*Y = -1  also suggest, themselves, for instance, to the solu- 
tion of the exact equation of motion by successive approxima- 
tions (by using the solution for. Y = -1,  instead of the 
solution for an incompressible flow, as the first approxima- 
tion)-. 

Numerical examples and.a comparison with other methods 
will be giveii'ina subsequent report; 

t 

Brown University, 
Providence, R. I., April 29,- 1944;. 
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•APPENDIX 

A.   This   section, contains,   the   proof, of   the   following 

Lemma   1:    Let . ' 

t   *   l(*,y),        T)   =   T|(x,y) (Al) 

"be   a   t ransf ormat.ion   of   a "domain     D     in  the   (x. y)--plane   int o 
'a   d'omain     A     in.  the   ( \. T))-plane,      Let     tp     and     \J/    he.  funct i ons 
of     x     and     y     defined   in     D.      (By_ virtue   of   the   above   trans- 
format ion   t h e y jn'ay also   he   considered   as   funct'i'ons   of      g     and 
11     -defined  in   . A.)     If     cp     and.     \j/     sat i s f y   in     D     the   differ- 
ential   equations 

dip   .-.. , d\|/' 
3x  ~ By 

t .• • 

By Bx 

>    A   =   A(x,y) •>•' 0 (A2) 

and   in _   A     the /.different ial   equations 

dcp, 

.an 

B 
^ 

3.4 

B   =   B(:£,T))   >   0 (A3) 

then, the transformation' (Al) jjj' oonf orm'al with respect t o the 
following Riemann metric defined in  D; 

dSS = e dx2 + 3f dx dy + g dy3 (A4) 

where 
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e   - cos3   6  + ~  sin.3   e 
A » 

-\ 

f = =   C1   "   A3)   Sin   S   C0B   G 

g  =   sins 6 + ~  cos3   6 
A2 

(A5) 

and     6     jLs. the   angle   "between  the   line     \^ =   constant     and   the 
x-axi s: 

tan e = äsa/äa 
By/    äx 

Geometrical -proof. (Cf fie. 7.)-  Equations (A2) show 
= . constant  and  \l; = .constant  subdivide that the lines cp 

the (x,y)~plane into infinitesimal rectangles pf side ratio A. 
Similarly, equations (A3) express the fact that the lines 
cp = constant  and \J/ = constant  subdivide the (| ,Tl)-plane 
into infinitesimal rectangles o£   side ratio B.  Therefore, in 
the neighborhood of some point (x,y) the mapping (Al) can "be 
described as the product of a similarity transformation and a 
transformation which contracts all lengths in the direction 
of the line cp = constant  in the ratio 3/A.  But a mapping 
conformal with respect to t-he. metric (A4) is exactly such a 
mapping.  For, let  ds = (dx, dy)  be a line element in the 
(x.y)-plane and let  a  be the angle between ibs direction 
and the x-direction.  Then  dx = ds cos ct,  dy = ds, sin a, 
and x = * (6 - ct)  is the angle between this line element' and 
the line  >J/ = constant.  A short computation shows that the 
non-Euclidean length of  ds,  as given by (A4), is equal to 

dS = ds J\  - 11 -B3/As) ix n 

Thus,   for     ds     parallel   to  the   line    cp   =   constant, 
dS  =   (B/A)ds,      and   for      ds     parallel   to   the   line    ty   =   constant, 
dS = ds. 

form 
Analytical proo'f.- Equations (A3) can be written, in the 
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§£ §*  +  ÖC£ Si „  B   /oik. &£ +   3j|£ äZN 
3x d|   .    9y 9t Vox 3T)       3y 3r|/ 

'Sac 9T)       By art Vax ag       ay 3^ 

By use   of  the  relations 

3£ _   . 3TI       OX dl 
S|   "       By»     dr)  =  "J  3y 

|f = -j §*,   SZ = J §1 
•   ••'of 9 x      9TI  •        a x 

j  _ d (*,y)' 

this   can   be   written   in   the   form 

'   §^ §11 •/§£ aji = _B /aj, aj. _ aj& aj\ .    v 
ax ay     ay ax    ••    ^ax ay     ay $xJ 

§£§!.._ §!£ §L te B f §£ §H •_ M 5ri\ 
ox ay     ay ax'       \ax ay     ay ax/ 

Introducing  the  values   of    3\|//8x     and     Bty/dy     given  by   (A2) 
and  using   (A6)   gives 

2 cob e |i + | sin e |1 = . sin e §3 + cos e §2 
A    ax  A    ay       ax      ey 

sin   6  £1 -   cos   8 §1 = 1   cos   6 §H + 1   sin   9 §23 
9x ay     A . ax     A ay 
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Solving   for     8|/3x     and    d|/3y    gives 

If  the   notations  given  "by   (A5)   are   used,   these   equations   can 
be   written   in  the   form 

3J. _       By  "   *   3x 
3x 

+ /eg  -   f3 

^1 -        a*        ay 
ay ~ ,  

+ /eg   -   f3 

But   these   are   the  well-known Beltrami   equations   which   express 
the   fact   that   the  mapping   (Al)   is   conformal   with  respect   to 
the   metric   (A4). 

Remark:.      The   converse   of   the   lemma  is   also   true   and   can 
"be  proved   similarly.     A  transformation   (Al)   conformal   with 
res-Dect   to   the   metric   (A4),    (A5)   takes     cp    and     \|/     satisfying 
(A2^   into   functions   which   satisfy   equations   (A3)   in  the 
( |,Tl)-plane . 

B „•   This   section   contains   the   proof   of   lemma   2.     .If     E(P) 
i s  ma-pped   into   . E (fl)   J2X a  trans for mat ion 

I  =    |(x,y), Tl   =  Tl(x.y) 

which i s conformal with respect t o a suhsonic compressible 
flow around  P  and such that 
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dx 3y ox oy. 

as     x3  +  ya —> op 

then  u* - iv*,  considered as .i functi on of  £ =  f + i T} 
'has at :the neighborhood of' £ = .e»  the • L-aur ent development 

u* -.iv* a q* - i£i i + . . . (B2) 
• -  °°   2w . g 

where 

r =7i -M8^r (B3) 

r  being the oirculati on o,f.-. the fl ow around  P . 

The above transformation-can be written in the form 

x y 
i = A + l agU'.'») äx< +  P &t(». y') dy. 

• 8x' -A        3y' 

St 

n = B +/ki^Vbl d,, .+ /
laM£LZl>'d7. 

y 

,/a        a,'   . -      J^\.    ay- 
cole 

where   (a,b)   is   some   point   of    'E(P),'' 

A   =   £(a,b), '     B   =   Tl(a,b) 
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and 
00 

If  use   is   made   of   l'Hopital'a   rule   and   (31),   It   is   seen   that 

t   = 

Tl   = 

Introducing 

shows  that 

a3  « x3  + H^ ys 

|   =   x  +   o(E)   ' 

T|   =  tf     y  +   o(R) 

Therefore:, 

(B4) 

1   . +   o 
x +   i^o,. y   +   o(R)        x  +  iS^ y ^E. © 

F * °<&> a > 1 

Since     u*   -   Iv*      is   a   one-valued  analytic   function   of   £ 
in   'E(n)      it   possesses   the  Laurent   development 

*        .   *          *   ,   a +  Iß    L  as  +  ißs u*  -   Iv*   =   a*   •¥•  - +• —= - +   .    .   . (B5) 

3 S Hence,   for   sufficiently large  values   of     x     +•  y   , 

a  +  iß 
u*   -   iv*   =  .q_*   + — r~ +   o 

00      x +  iNay \Et £) (B6) 
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so   that 

u*   =   q*   +  ax   +  ßH°° y 

xS   +  N3   y3 
CO    v 

'<?) 
(B7) 

V*        E= 
3     .     „3        3 V1 / X        +    H 

CO 7 

(B8) 

u*s +  v*' 

q*3   + 
" X2   +  H3  y3 W 

(39) 

03        xs   +   tf2   y3 W 
(BIO) 

Next,      q/q*      is   an   analytic   function   of     q*,      so   that 

=  %  +   ^coU*   -   1*    >   +   0(.k*   -   q*i3> (Bll) 

|q*   »   q*js   —^   0 

where 

since 

A     = 
CO 

d 

dq* 

1 

fe) q* 
q*   =    c* 
^ •'-co 

do* j   i  q*   =   q* 
•^ CC 

"' a*3   \S„ "      ) 

dq* d A/l   -   M3   , q* -*  =  —-  exp /  v   dq   =  -£- 
dq        dq / q a 

Jl   -   M' 

(B12) 

(Of.   the   definition   of   the   conjugate   speed     q*. ) 
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By   (Bll)   and   (BIO)    ••• 

* n* °°   x3    +   N3    y2 \R/ 
CO 

Therefore   • ; 

a* °°       a*   IT     xs   +  IT»   y3 \BV "-co       co "CO 

a* a*   Is  + UF|, y3 W 

(313) 

(B14) 

The   ay&fcol     p     is   an   analytic   function   of     q.     and   there- 
fore   also   of     q_*,       Hence 

P   =   Poo  +  V**   ~   q« }   +   °( ]<1*   ~   q*°=fE) 

where 

B      =  J£_ 
,°:       dq* 

•^ -'"<**, 

= _ p^S 

since, .fry :B:ex n-oul 1 i ' s   equation, 

:t^P :te -  P. 
dq 

M* 

By   (B15)   and   (BIO) 

(BIB) 

(B16) 

p   =   p      +   B     "*  +  **"> y  +   o(±) 
Xs •:+: $,?_ ys •     . >B/ 

CO 00 
(B17) 

so   that,   -by   (B13),    (B14>,   and   (B17), 
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P«- = Pco «L» + Poo% Noo 
ax + ßN^ y 

x2 + H» y3 • •(£) 

pv = p 
qB aN^y ~ ßx 

CO 
+ H 3 „3 

+ 0 (I) 

(B18) 

(B19) 

Now, let  0  "be any simple closed curve containing the 
urofile  P- in its interior.  Then 

T = / u dx + v dy 

0 = / pv dx - pu dy 

(B20) 

(B2l) 

In  particular,   it   is   possible   to   take   for     0     the   ellipse     OJJ 

with   the   semi-axis 

a  =' H,     "b   = 
N, 

the   equation   of   which   is 

CD 

For sufficiently large values of  E  the developments 
for  u, v, pu, pv previously obtained may he introduced 
under the integral signs in (B30), (B2l).  Then, using Green' s 
theorem and denoting the interior of  0a  hy  ER  results in 

r « %* dx  + 
H; 

'E ?E 

(ax  + ßK_  y)   dx 

+ %  (aNoo y -  ßx)   dy)  +  o(l) 

s 
oo R      q.* 

dx  dy  +   o(l) 

2ß   qc ^ TT   +   o(l) 
OS    1» *co   1* 
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+ A_ P  l*p. Iss (au« y - ßx)< 
^4   l08-«*.   :• ;' . 

'E 

- Pa iä NOD (w"+ •ßITÄ>-.y)dy\ + 6(1).' 
P 4* J    • 

= - Pia JLa 20,1^ //  dx dy + o(l) 
Es <1* 

= - 2ap_ .iss TT + o(l) 
AL* 

Letting  E —> oo   yields 

r =  ^, .  0 » - 2rrapm 

whence 
/ 

p=- Hs2_E SJP   a = 0 (B33) 

If this is substituted into (B5), it can be seen that (B2), 
(B3) is verified. 

C, This section is devoted to the proof of the properties 
of the mapping function (70) whioh have "been announced and 
used in deriving the parametric representation of subsonic 
flows with  Y = -1. ;•'•'..    •:••. 

First of all, this function maps PI  into a closed pro- 
file  P  and is one-valued in  B(n) .  In fact, -let  J  he a 
closed curve around PI and  d > the increase in  z . as  £ 
goes once around  J  (J  may coincide with P) ).  For suffi- 
ciently large values.of  ]£(,  »'(£)  has the Laurent develop- 
ment 

&i(£)«l+£l. + f*+...,  A   real 
it   t a 
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Therefore 

d =   0<j    /   <Jt 

J 

=   27TAi   0 |(1   -   1/a)   - V   (1   +   l/n)\  . 

If     A-i   =   0,      d   =   0.      If     Ax   j^   0,      G(£)     Is   not   one-valued, 
so   that      n   =   1/,/l-M^    and   therefore 

(1 - 1/n) - n3 (1 + 1/n) = 0 

so that  d = 0. 

.16 Next, let  dz = dse °  De the complex line element on  P, 
d£ = d o" e °1  the corresponding complex line element on (~l . 
On n 

&<(£) c |ß« I e"1^ (01) 

so that by (70) :- 

dz  =   Oltf-l.1-1/11   (1   -   n'l&H 2/n)   ei6i/n   der (02) 

and  therefore 

ds       „,„,   l-i/n   ,, s s/n, 
— =   C |G't '       (1   -   p    )dl{     '    ) 
do- 

By virtue of (69)  ds/do"  cannot vanish except at the two 
stagnation points where  G-1 =• 0,  and is positive, elsewhere. 
Hence the . matming of -fl  int o  P is one-to-one . 

Furthermore, it is easily seen that  z  is finite for 
all finite values of t,     and  z = co for  £ = oo. 

Finally, .the Jacohian 

5(x,   y) 
a( I« Tl) 

does   not   vanish   in     B (I I) ,     For 
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ff - ff * ||,= c^-1-1/* - v.* &-1-1/11) 

=  i(|f -'-Sä).  iCCG«1-1/11  + ^L2  <J.1+1/*). 3z 
8T) 

(03) 

And 

frrrw) • Klf !*) • oi'8'< *"2/n (1 - ^ 4/n> 
The expression on the right-hand side is not zero, for it is 
always assumed that there are no stagnation points within the 

flow and  (l - n4J&T  n) > 0  hy virtue of (69). 

From the preceding results it follows that (70) map's 
E (n)  into ja. sinrply connected domain  E(P)  containing the 
•point infinity and "bounded "by ji closed curve  P. 

From (03) and (65) it also follows that as —£ > oo 

>   0(1   +  \i,3)    (04) 83C 

3T) 
o,    äE __» of  • 5E 

a£ a-n 
i-8i Finally,   if     d£  =   i   d er e     i     is   a   complex   line   element 

situated  at   a point   of    Ft    and normal  to  PI ,      the   correspond- 
ing  line*  element     dz     is,   "by   (70)   and   (01)   given  "by 

dz  =   10 Iff« I1"1/11   (1   + M.3|G'[3/n>   ei8i/n  da 

By  comparison   of   this   with   (02)   it   is   seen that   the   direction 
normal   to    PI     i_s   taken   into   the   direction   normal   to     P. 



ÜBLE I 

Xbe distorted speed (q*), the Mach marter (M), the 

dJLMUfiionless density (rij end the coefficient of the &ynnstri£»d 

Itoaograph equation (I) as functions of the ai«enSionl»sa speed 

4.    (f = 1.40S; <L = .911976; only tha «anttlflaaS of log <j» 

«re giv«n,) 

t ^o1* «J* V f I 

.01 160455 .014169 ,01000 .99995 l.OOOOO 

.OS 461434 ,088936 .02000 .99960 l.OOOOO 

.OB 637478 .045338 .08000 .99965 1.00000 

.04 762355 .057854 .04001 .999») 1,00000 

.05 860146 .078501 .08001 .99075 1,00000 

.06 036809 .0867% .06002 .998S0 1,00000 

.07 005Q14 .10116 .07005 .99755 ,99999 

.OB 068848 .13657 .08005 .99660 *7999Q 

.09 123609 .leeec .09007 .99695 .$9998 

.10 159869 .14453 .10010 .99501 .99997 

.11 800583 .1S66B .11014 .99396 .99996 

.1» £56060 .17301 .12018 .99202 .99994 

.IS E72B4S .167SC .13032 .99157 .99991 

.14 304458 ,20158 .14028 .80023 .69988 

.16 354065 .81582 .15054 .98879 .99934 

.16 361771 .23008 .16048 .93726 .99990 

.1? 367738 .84420 .17050 .98561 .99974 

.18 418176 .85833 .18059 .96386 •99G67 

:S 435249 .87248 .19070 .96805 •09959 
457094 .£8648 .20081 .98012 .99950 

.81 477830 .30049 .21094 .97609 .99959 

.a? 497657 .51445 .82109 .97597 «9u9jc6 

.»5 516368 .5S837 .2M.24 .97876 .99911 

.84 5345J31 .34288 .24141 .97145 .99895 

.85 551503 .36604 .25160 .96904 .99875 

•Eo 667938 .36980 .56180 .96664 .09855 
.87 583762 .36350 .87806 •9DOB4 .99029 
.es G989SB .5*71» .23225 .96126 .99601 
.«a 6135S& .41071 .69250 .95847 .99789 
.«0 687690 .42482 .30877 .95560 .99785 

.81 

.38 

.as 

.94 

.85 

.36 

.37 ' 

.SB 

.59 

.40 

.41 

.4? 

.43 

.44 

.45 

.46 

.47 

.46 

.49 

.50 

.51 

.52 

.59 

.54 

.55 

.56 

.67 

.58 

.59 

.60 

.61 

.62 

.69 

.64 

.6» 

.66 

.67 

.69 

.70 

log q» 
10 

641129 
654211 
«68833 
679051 
6908B7 

708843 
713298 
784009 
754398 
74446B 

754855 
763721 
778988 
781881 
79057« 

799027 
807244 
815234 
883004 
660565 

837916 
345071 
852032 
85880» 
665396 

871608 
87804? 
884116 
890019 
896761 

90134» 
906769 
912043 
917164 
022133 

986966 
951649 
956190 
940690 
944049 

TA3IS I*  (Oontlmwi) 
q* 

.49766 

.45104 

.46454 

.47756 

.49071 

.50378 

.51677 

.52967 

.64249 

.55588 

.56785 

.58039 

.59263 

.60617 

.81741 

.62955 

.64157 

.65348 

.66see 

.67696 

.66862 

.69996 

.71127 

.72846 

.73349 

.74440 

.76617 

.76590 

.77628 

.76661 

.79679 

.80881 

.81666 

.88335 

.65567 

.64581 

.65458 

.66356 
,67215 
.88074 

.31306 

.38997 

.33570 

.34405 

.35442 

.36488 

.37584 

.38568 

.40664 

.41716 

.48771 

.43326 

.44889 
,45962 

.47018 

.46068 

.49161 

.50836 

.51316 

.58399 

.58485 

.64675 

.66669 

.56766 

.57868 

.58973 

.60085 

.81196 

.62814 

.62437 

.64564 

.65696 

.66882 

.67973 

.69119 

.70270 

.71426 

.72568 

.72755 

,  .9586» 
.94958 
.94843 
.94319 
.98986 

.93644 

.93294 

.98934 

.92566 

.98169 

.91804 

.91410 

.91003 

.90587 

.90178 

.89750 

.89KU5 
,83878 
.38480 
.87961 

.87494 

.87019 

.86537 

.86047 

.65549 

.85044 

.64552 

.84013 

.83486 

.88953 

.82412 

.61865 

.81312 

.80751 

.80185 

.79618 

.79022 

.78447 

.77855 

.77858 

.99695 

.99658 

.99604 

.99551 

.99487 

.99356 

.99878 
,99192 
.99099 

.98997 

.96886 

.96766 

.98633 

.98490 

.88336 

.98168 

.97988 

.97789 

.97577 

.97347 

.97099 

.96638 

.96543 

.96853 

.95538 

.95150 

.94733 

.94884 

.93800 

.98860 

.98781 
,92119 
.91478 

.90776 

.90085 

.89817 

.38847 
,87408 

t 
> 

g 
as o • 

s 
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TABU X. (Concluded) 

i q. loglod* q* If f T 

.71 

.72 

.73 

.74 

.75 

948969 
952951 
956795 
960501 
964070 

.88914 

.89733 

.90531 

.91306 

.92060 

.74927 

.76105 

.77289 

.78479 

.79675 

.76654 

.76045 

.75431 

.74811 

.74186 

.86396 

.85303 

.84121 

.82844 
-   .81459 

.76 

.77 

.78 

.79 

.80 

967500 
970791 
973942 
976951 
979817 

.92790 

.93496 

.94176 

.94831 

.95459 

.80877 

.82085 

.83300 

.84521 

.85749 

.73555 

.72920 

.72279 

.71634 

.70984 

.79957 

.78325 

.76547 

.74606 

.72481 

.81 

.82   * 

.83 

.84 

.85 

982536 
985106 
987521 
989777 
991866 

.96059 

.96629 

.97168 

.97674 

.98145 

.86984 

.88226 

.89475 

.90732 

.91990 

.70329 

.69670 

.69006 

.68339 

.67667 

.70146 

.67570 

.64713 

.61524 

.57934 

.86 

.87 

.88 

.89 

.90 

993780 
995505 
997025 
998313 
999326 

.98578 

.98970 

.99317 

.99612 

.99845 

.93267 

.94547 

.95834 

.97130 

.98434 

.66991 

.66312 

.65628 

.64942 

.64252 

.53846 

.49118 

.43520 

.36626 

.27434 

' 
.91 999957 

000000 
.99990 

L.00000 
.99747 

1*00000 
.63558 
.63425 

.11190 

.00000 
_______ 
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TABLE II 
Constants entering In the computation of the con- 

jugate compressible flow for V = - 1. 

Uco 

-•' -ü     — 

1/n /*=q*- >~2 K»At_1 K=>~-n n-ft-llS., 

.05 1.001 .999 .025 .001 39.98 40.16 

.10 1.005 .995 .050 .003 19.95 20.26 

.15 1.011 .989 .075 .006 13.26 13.65 

.20 1.021 .980 .101 .010 9.90 10.38 

.25 1.033 .968« .127 .016 7.87 8.43 

.30 1.048 .954 .154 .024 6.51 7.13 

.35 1.068 .937 .181 ,033 5.53 6.21 

.40 1.091 .917 .212 .045 4.72 5.53 

.45 1.120 .893 .238 .057 4.21 5.00 

.50 1.155 .866 .266 .072 3.73 4.58 

.55 1.197 .835 .300 .090 3.34 4.23 

.60 1.250 .800 .333 .111 3.30 3.95 

.65 1.306 .760 .369 .136 2.71 3.71 

.70 1.400 .714 .408 .167 .   2.45 3.50 

.75 1.535 .651 .454 .206 2.20 3,36 

.80 1.667 .6Q0 .500 .250 2.00 3.17 

.85 1.898 .527 .557 .310 1.80 3.04 

.90 .627 .393 1.60 

.95 .724 .524 1.38 
1.00 1.000 1.000 1.00 
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